4-SUBSTITUTED 1-(1-(2-(ARYLTHIO)-5-HALOGENOPHENYL)ETHYL)PIPERAZINES; SYNTHESIS AND BIOLOGICAL SCREENING

Vladimír Valenta, Jiří Holubek and Miroslav Protiva
Research Institute for Pharmacy and Biochemistry, 13060 Prague 3

Received May 12th, 1986

Abstract

Reactions of 2,5 -dichloroacetophenone and 2,5-dibromoacetophenone with a series of thiophenols gave the 2-(arylthio)-5-halogenoacetophenones VII and VIII which were reduced with sodium borohydride in ethanol to the secondary alcohols $I X$ and X. Treatment with thionyl chloride afforded the chloro compounds $X I$ and $X I I$ which were transformed by substitution reactions with correspondingly monosubstituted piperazines by two methods to the title compounds $I-V$. Their salts (maleates and hydrochlorides) showed in addition to antitussic activity some anthelmintic effects towards a series of the helminth species.

Some time ago our research team ${ }^{1}$ described the synthesis of 1-(1-(5-chloro-2-(phenyl-thio)phenyl)ethyl)-4-methylpiperazine ($I a$) which was prepared as an open model of the neuroleptic agent clorothepin (octoclothepin) (ref. ${ }^{2}$). The substance $I a$ ("fethiozine", VÚFB-12 257) did not reveal any neuroleptic activity but in addition to some peripheral neurotropic effects it showed within a screening programme, outlined more recently, an important anthelmintic effect against Trichocephalus muris and in lesser extent towards Fasciola hepatica and Heterakis spumosa. These findings induced us to use the structure $I a$ as a prototype for preparing a series of fethiozine analogues (title compounds $I-V$) modified on the one hand by chlorination in the phenylthio residue, and in the N^{4} piperazine substituent on the other.

$\begin{array}{ll}\text { I, } \mathrm{R}=\mathrm{CH}_{3} & \mathrm{~V}, \mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{5} \\ \text { II, } \mathrm{R}=\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH} & \mathrm{V}, \mathrm{R}=\square_{\mathrm{Cl}} \\ \text { III, } \mathrm{R}=\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OCH}_{3} & \end{array}$
(In formulae $I-V, V I I-X \| I: \quad, \quad R^{\prime}=H_{i}$ o $\quad R^{\prime}=2-\mathrm{Cl}_{i}$ o $R^{\prime}=4-\mathrm{Cl}_{i}$ $d_{1} \mathrm{R}^{\prime}=3,4-\mathrm{Cl}_{2}$ e, $\mathrm{R}^{\prime}=2,5-\mathrm{Cl}_{2}$)

The description of syntheses of these compounds and results of their biological screening are the subjects of the present communication.

The synthesis of the title compounds $I-V I$ started from the 2-(arylthio)-5-halogenoacetophenones (VII, VIII), out of which VIIa (ref. ${ }^{1}$), VIIb (ref. ${ }^{3}$) and VIIc (ref. ${ }^{4}$) were known. The remaining ketones VIId, VIIe and VIII were obtained by reactions of 2,5 -dichloroacetophenone ${ }^{1}$ and 2,5-dibromoacetophenone ${ }^{5}$ with 3,4-dichlorothiophenol ${ }^{6}, 2,5$-dichlorothiophenol ${ }^{7}$, and thiophenol, respectively, in the presence of potassium carbonate and copper at $150^{\circ} \mathrm{C}$. The ketones $V I I$ and $V I I I$ were reduced with sodium borohydride in boiling ethanol to the secondary alcohols $I X$ and X, out of which only $I X a$ had been described previously ${ }^{1}$. The following treatment with thionyl chloride in boiling benzene led to the chloro compounds $X I$ and $X I I$ which were oily and distilled under partial decomposition ($X I a$ described previously ${ }^{1}$); for this reason they were used without characterization as crude products. In the final step, these chloro compounds were processed by substitution reactions with 1-methylpiperazine, 1-(2-hydroxyethyl)piperazine, 1-(2-methoxyethyl)piperazine ${ }^{8}$, 1--phenylpiperazine ${ }^{9}$ and 1 -(3-chlorophenyl)piperazine ${ }^{10}$. For carrying out these reactions, two methods were used. In the case of hydrophilic piperazines with aliphatic substituents, the chloro compounds $X I$ and $X I I$ were refluxed for 7 h with a four--fold excess of the corresponding piperazine in chloroform, the excess of the monosubstituted piperazine was removed by washing with water, the desired crude bases were transformed to maleates which were purified by crystallization (method A). The bases released from the pure maleates (some of the bases crystallized) were used for recording the spectra. In cases of the rather hydrophobic arylpiperazines, the chloro compounds $X I$ were reacted with equimolecular quantities of the monosubstituted piperazines in dimethylformamide at $120-130^{\circ} \mathrm{C}$ in the presence of potassium carbonate; the crude bases were isolated by treatment with dilute hydrochloric acid and purified by crystallization of the hydrochlorides (method B). Most of the released bases crystallized and their spectra were also recorded. All of the title compounds, prepared by methods A and B, are assembled in Table I with the usual experimental data. The Experimental describes the synthesis of all new intermediates (VII-XII)

$$
\begin{aligned}
I X, \mathrm{R} & =\mathrm{Cl} ; \mathrm{R}^{2}=\mathrm{OH} \\
X, \mathrm{R} & =\mathrm{Br} ; \mathrm{R}^{2}=\mathrm{OH} \\
X I, \mathrm{R} & =\mathrm{Cl} ; \mathrm{R}^{2}=\mathrm{Cl} \\
X I, \mathrm{R} & =\mathrm{Br} ; \mathrm{R}^{2}=\mathrm{Cl}
\end{aligned}
$$

Table I
4-Substituted 1-(1-(2-(arylthio)-5-halogenophenyl)ethyl)piperazines $I-V I$

Compound ${ }^{\text {a }}$	Method (yield \%)	M.p., ${ }^{\circ} \mathrm{C}$	Formula (mol.wt.)	Calculated/found				
				\% C	\% H	$\% \mathrm{Cl}$	\% N	\% S
Ib-2 HM	A (76)	$\underset{\text { (2-propanol) }}{141-143 \cdot 5^{b}}$	$\underset{(613 \cdot 5)}{\mathrm{C}_{27} \mathrm{H}_{30} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{8} \mathrm{~S}}$	$\begin{aligned} & 52 \cdot 85 \\ & 52 \cdot 70 \end{aligned}$	$\begin{aligned} & 4.93 \\ & 5.00 \end{aligned}$	$\begin{aligned} & 11 \cdot 56 \\ & 11.80 \end{aligned}$	$\begin{aligned} & 4 \cdot 57 \\ & 4 \cdot 15 \end{aligned}$	$\begin{aligned} & 5 \cdot 23 \\ & 5 \cdot 40 \end{aligned}$
Ic-2 HM	A (47)	$\begin{aligned} & 154 \cdot 5-155 \cdot 5^{c} \\ & \text { (ethanol) } \end{aligned}$	$\underset{(613.5)}{\mathrm{C}_{27} \mathrm{H}_{30} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{8} \mathrm{~S}}$	$\begin{aligned} & 52 \cdot 85 \\ & 52 \cdot 52 \end{aligned}$	$\begin{aligned} & 4 \cdot 94 \\ & 4 \cdot 94 \end{aligned}$	$\begin{aligned} & 11.56 \\ & 11.73 \end{aligned}$	$\begin{aligned} & 4.57 \\ & 4.56 \end{aligned}$	$\begin{aligned} & 5.23 \\ & 5.35 \end{aligned}$
$I d-2 \mathrm{HM}^{\text {d }}$	A (48)	$\begin{aligned} & 146-147 \cdot 5^{e} \\ & \text { (acetone) } \end{aligned}$	$\begin{aligned} & \mathrm{C}_{27} \mathrm{H}_{29} \mathrm{Cl}_{3} \mathrm{~N}_{2} \mathrm{O}_{8} \mathrm{~S} \\ & +\mathrm{H}_{2} \mathrm{O} \\ & \quad(666 \cdot 0) \end{aligned}$	$\begin{aligned} & 48 \cdot 69 \\ & 49 \cdot 22 \end{aligned}$	$\begin{aligned} & 4 \cdot 69 \\ & 4 \cdot 40 \end{aligned}$	$\begin{aligned} & 15.97 \\ & 15 \cdot 61 \end{aligned}$	$\begin{aligned} & 4 \cdot 21 \\ & 4 \cdot 20 \end{aligned}$	$\begin{aligned} & 4.82 \\ & 4.99 \end{aligned}$
Ie-2 HM	A (54)	$\begin{aligned} & 153-154 \cdot 5^{f} \\ & \text { (acetone-ether) } \end{aligned}$	$\underset{(648 \cdot 0)}{\mathrm{C}_{27} \mathrm{H}_{29} \mathrm{Cl}_{3} \mathrm{~N}_{2} \mathrm{O}_{8} \mathrm{~S}}$	$\begin{aligned} & 50 \cdot 04 \\ & 49 \cdot 83 \end{aligned}$	$\begin{aligned} & 4.51 \\ & 4.62 \end{aligned}$	$\begin{aligned} & 16 \cdot 42 \\ & 16 \cdot 30 \end{aligned}$	$\begin{aligned} & 4 \cdot 32 \\ & 4 \cdot 28 \end{aligned}$	$\begin{aligned} & 4 \cdot 95 \\ & 5 \cdot 12 \end{aligned}$
IIa-2 HM ${ }^{\text {g }}$	A (70)	$\begin{gathered} \text { (2-propanol) } \end{gathered}$	$\underset{(609 \cdot 1)}{\mathrm{C}_{28} \mathrm{H}_{33} \mathrm{ClN}_{2} \mathrm{O}_{9} \mathrm{~S}}$	$\begin{aligned} & 55 \cdot 21 \\ & 55 \cdot 12 \end{aligned}$	$\begin{aligned} & 5.46 \\ & 5.63 \end{aligned}$	$\begin{aligned} & 5 \cdot 82 \\ & 6 \cdot 20 \end{aligned}$	$\begin{aligned} & 4.60 \\ & 4.33 \end{aligned}$	$\begin{aligned} & 5 \cdot 27 \\ & 5 \cdot 45 \end{aligned}$
$I I a^{g}$	-	$\begin{gathered} 72-76 \\ \text { (benzene-hexane) } \end{gathered}$	$\underset{(377 \cdot 0)}{\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{ClN}_{2} \mathrm{OS}}$	$\begin{aligned} & 63 \cdot 72 \\ & 63 \cdot 18 \end{aligned}$	$\begin{aligned} & 6.69 \\ & 6.70 \end{aligned}$	$\begin{aligned} & 9 \cdot 41 \\ & 9 \cdot 33 \end{aligned}$	$\begin{aligned} & 7.43 \\ & 6.97 \end{aligned}$	$\begin{aligned} & 8.51 \\ & 8.67 \end{aligned}$
IIb-2 HM	A (75)	$\underset{\text { (2-propanol) }}{134-135}$	$\underset{(643 \cdot 5)}{\mathrm{C}_{28} \mathrm{H}_{32} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{9} \mathrm{~S}}$	$\begin{aligned} & 52.25 \\ & 51.87 \end{aligned}$	$\begin{aligned} & 5 \cdot 01 \\ & 5 \cdot 12 \end{aligned}$	$\begin{aligned} & 11.02 \\ & 11.04 \end{aligned}$	$\begin{aligned} & 4.35 \\ & 4.01 \end{aligned}$	$\begin{aligned} & 4.98 \\ & 5 \cdot 10 \end{aligned}$
$I I b^{\text {d }}$	-	$\begin{aligned} & \quad 90-92^{h} \\ & \text { (benzene-light petroleum) } \end{aligned}$	$\begin{aligned} & \mathrm{C}_{20} \mathrm{H}_{24} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{OS} \\ & +\underset{(429 \cdot 4)}{\mathrm{H}_{2} \mathrm{O}} \end{aligned}$	$\begin{aligned} & 55 \cdot 94 \\ & 56 \cdot 18 \end{aligned}$	$\begin{aligned} & 6 \cdot 10 \\ & 6.01 \end{aligned}$	$\begin{aligned} & 16 \cdot 51 \\ & 16 \cdot 20 \end{aligned}$		
IId-2 HM	A (70)	$\begin{aligned} & 135-135 \cdot 5^{i} \\ & \text { (acetone-ether) } \end{aligned}$	$\underset{(678 \cdot 0)}{\mathrm{C}_{28} \mathrm{H}_{31} \mathrm{Cl}_{3} \mathrm{~N}_{2} \mathrm{O}_{9} \mathrm{~S}}$	$\begin{aligned} & 49 \cdot 60 \\ & 49 \cdot 73 \end{aligned}$	$\begin{aligned} & 4.61 \\ & 4.57 \end{aligned}$	$\begin{aligned} & 15 \cdot 69 \\ & 15 \cdot 65 \end{aligned}$	$\begin{aligned} & 4.13 \\ & 3.97 \end{aligned}$	$\begin{aligned} & 4.73 \\ & 4.98 \end{aligned}$

IIa-2 HM	A (78)	$\begin{aligned} & 130-132^{j} \\ & \text { (acetone) } \end{aligned}$	$\underset{(678 \cdot 0)}{\mathrm{C}_{28} \mathrm{H}_{31} \mathrm{Cl}_{3} \mathrm{~N}_{2} \mathrm{O}_{9} \mathrm{~S}}$	$\begin{aligned} & 49 \cdot 60 \\ & 49 \cdot 68 \end{aligned}$	$\begin{aligned} & 4 \cdot 61 \\ & 4 \cdot 67 \end{aligned}$	$\begin{aligned} & 15 \cdot 69 \\ & 15 \cdot 44 \end{aligned}$	$\begin{aligned} & 4.13 \\ & 3.95 \end{aligned}$	$\begin{aligned} & 4 \cdot 7.7 \\ & 4 \cdot 90 \end{aligned}$
IIId-2 HM	A (36)	$\begin{aligned} & \quad 148-149^{k} \\ & \text { (ethanol-ether) } \end{aligned}$	$\underset{(692 \cdot 0)}{\mathrm{C}_{29} \mathrm{H}_{33} \mathrm{Cl}_{3} \mathrm{~N}_{2} \mathrm{O}_{9} \mathrm{~S}}$	$\begin{aligned} & 50 \cdot 33 \\ & 50 \cdot 53 \end{aligned}$	$\begin{aligned} & 4 \cdot 81 \\ & 4.82 \end{aligned}$	$\begin{aligned} & 15 \cdot 37 \\ & 15 \cdot 13 \end{aligned}$	$\begin{aligned} & 4.05 \\ & 3.72 \end{aligned}$	$\begin{aligned} & 4 \cdot 63 \\ & 4 \cdot 97 \end{aligned}$
IVa-HCl	B (56)	${ }_{\text {(ethanol) }}^{163-164}$	$\underset{(445 \cdot 5)}{\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{~S}}$	$\begin{aligned} & 64 \cdot 71 \\ & 64 \cdot 33 \end{aligned}$	$\begin{aligned} & 5 \cdot 88 \\ & 5 \cdot 97 \end{aligned}$	$\begin{aligned} & 15 \cdot 92 \\ & 15 \cdot 91 \end{aligned}$	$\begin{aligned} & 6 \cdot 29 \\ & 6 \cdot 15 \end{aligned}$	$\begin{aligned} & 7 \cdot 20 \\ & 7 \cdot 47 \end{aligned}$
IVa	-	$\begin{gathered} 87-91^{l} \\ \text { (benzene-hexane) } \end{gathered}$	$\underset{(443 \cdot 7)}{\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{ClN}_{2} \mathrm{~S}}$	$\begin{aligned} & 70 \cdot 48 \\ & 70 \cdot 45 \end{aligned}$	$\begin{aligned} & 6 \cdot 16 \\ & 6 \cdot 28 \end{aligned}$	$\begin{aligned} & 8.67 \\ & 8.82 \end{aligned}$	$\begin{aligned} & 6.85 \\ & 6.53 \end{aligned}$	$\begin{aligned} & 7.84 \\ & 7.87 \end{aligned}$
$\underline{I V b-2 ~ H C l}$	B (79)	$\begin{aligned} & 207-207 \cdot 5^{m} \\ & \text { (ethanol-ether) } \end{aligned}$	$\underset{(516 \cdot 4)}{\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{Cl}_{4} \mathrm{~N}_{2} \mathrm{~S}}$	$\begin{aligned} & 55 \cdot 82 \\ & 55 \cdot 39 \end{aligned}$	$\begin{aligned} & 5 \cdot 07 \\ & 4 \cdot 90 \end{aligned}$	$\begin{aligned} & 27 \cdot 47 \\ & 26 \cdot 91 \end{aligned}$	$\begin{aligned} & 5 \cdot 43 \\ & 5 \cdot 18 \end{aligned}$	$\begin{aligned} & 6 \cdot 21 \\ & 6 \cdot 20 \end{aligned}$
IVC-HCl	B (67)	$\begin{aligned} & \text { (ethanol) } \end{aligned}$	$\underset{(479 \cdot 9)}{\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{Cl}_{3} \mathrm{~N}_{2} \mathrm{~S}}$	$\begin{aligned} & 60 \cdot 06 \\ & 60 \cdot 04 \end{aligned}$	$\begin{aligned} & 5 \cdot 25 \\ & 5 \cdot 34 \end{aligned}$	$\begin{aligned} & 22 \cdot 17 \\ & 22 \cdot 01 \end{aligned}$	$\begin{aligned} & 5 \cdot 84 \\ & 5 \cdot 68 \end{aligned}$	$\begin{aligned} & 6.68 \\ & 6.60 \end{aligned}$
IVc	-	$\begin{aligned} & 142-146^{n} \\ & \text { (benzene-light petroleum) } \end{aligned}$	$\underset{(443 \cdot 4)}{\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{~S}}$	$\begin{aligned} & 65 \cdot 00 \\ & 65 \cdot 18 \end{aligned}$	$\begin{aligned} & 5 \cdot 46 \\ & 5.63 \end{aligned}$	$\begin{aligned} & 15.99 \\ & 15.75 \end{aligned}$	$\begin{aligned} & 6 \cdot 32 \\ & 5.85 \end{aligned}$	$\begin{aligned} & 7 \cdot 23 \\ & 7 \cdot 18 \end{aligned}$
$I V d-2 \mathrm{HCl}$	B (51)	$\begin{array}{r} 167-169 \\ \text { (ethanol-ether) } \end{array}$	$\underset{(550 \cdot 8)}{\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{Cl}_{5} \mathrm{~N}_{2} \mathrm{~S}}$	$\begin{aligned} & 52 \cdot 33 \\ & 52 \cdot 28 \end{aligned}$	$\begin{aligned} & 4.57 \\ & 4.51 \end{aligned}$	$\begin{aligned} & 32 \cdot 18 \\ & 32 \cdot 47 \end{aligned}$	$\begin{aligned} & 5.09 \\ & 4.69 \end{aligned}$	$\begin{aligned} & 5 \cdot 82 \\ & 5 \cdot 84 \end{aligned}$
IVd	-	$\begin{aligned} & 143-146^{\circ} \\ & \text { (cyclohexane) } \end{aligned}$	$\underset{(477 \cdot 9)}{\mathrm{C}_{24} \mathrm{H}_{23} \mathrm{Cl}_{3} \mathrm{~N}_{2} \mathrm{~S}}$	$\begin{aligned} & 60 \cdot 32 \\ & 60 \cdot 52 \end{aligned}$	$\begin{aligned} & 4 \cdot 85 \\ & 4 \cdot 95 \end{aligned}$	$\begin{aligned} & 22 \cdot 26 \\ & 21 \cdot 66 \end{aligned}$	$\begin{aligned} & 5 \cdot 86 \\ & 5 \cdot 54 \end{aligned}$	$\begin{aligned} & 6.71 \\ & 6.88 \end{aligned}$
$\mathrm{Va}-\mathrm{HCl}$	$\mathrm{B}^{\boldsymbol{p}}$ (64)	$\begin{gathered} 153-155^{q} \\ \text { (2-propanol) } \end{gathered}$	$\underset{(479 \cdot 9)}{\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{Cl}_{3} \mathrm{~N}_{2} \mathrm{~S}}$	$\begin{aligned} & 60 \cdot 06 \\ & 60 \cdot 01 \end{aligned}$	$\begin{aligned} & 5 \cdot 26 \\ & 5 \cdot 26 \end{aligned}$	$\begin{aligned} & 22 \cdot 17 \\ & 22 \cdot 11 \end{aligned}$	$\begin{aligned} & 5 \cdot 84 \\ & 5 \cdot 64 \end{aligned}$	$\begin{aligned} & 6 \cdot 68 \\ & 6 \cdot 80 \end{aligned}$
$V c-\mathrm{HCl}^{g}$	B (62)	$\begin{gathered} \text { (2-propanol) } \end{gathered}$	$\underset{(514 \cdot 4)}{\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{Cl}_{4} \mathrm{~N}_{2} \mathrm{~S}}$	$\begin{aligned} & 56.04 \\ & 56.04 \end{aligned}$	$\begin{aligned} & 4.70 \\ & 4.83 \end{aligned}$	$\begin{aligned} & 27 \cdot 57 \\ & 27 \cdot 32 \end{aligned}$	$\begin{aligned} & 5 \cdot 45 \\ & 5.22 \end{aligned}$	$\begin{aligned} & 6.42 \\ & 6.50 \end{aligned}$
Vc	-	$\begin{gathered} 133-136 \\ \text { (benzene-light petroleum) } \end{gathered}$	$\underset{(477 \cdot 9)}{\mathrm{C}_{24} \mathrm{H}_{23} \mathrm{Cl}_{3} \mathrm{~N}_{2} \mathrm{~S}}$	$\begin{aligned} & 60 \cdot 32 \\ & 60 \cdot 85 \end{aligned}$	$\begin{aligned} & 4.85 \\ & 5.01 \end{aligned}$	$\begin{aligned} & 22 \cdot 26 \\ & 22 \cdot 03 \end{aligned}$	$\begin{aligned} & 5 \cdot 86 \\ & 5 \cdot 67 \end{aligned}$	$\begin{aligned} & 6.71 \\ & 6.63 \end{aligned}$

[^0]$5 \mathrm{CH}_{2} \mathrm{~N}$), $1 \cdot 25\left(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{j}$ Oily base $I I a,{ }^{1} \mathrm{H}$ NMR spectrum: $\delta 7 \cdot 58$ (bs, $1 \mathrm{H}, 6-\mathrm{H}$), c. $7 \cdot 25\left(\mathrm{~m}, 3 \mathrm{H}, 3,4,3^{\prime}-\mathrm{H}_{3}\right), 7 \cdot 00(\mathrm{dd}$, $\left.J=8.0 ; 3.0 \mathrm{~Hz}, 1 \mathrm{H}, 4^{\prime}-\mathrm{H}\right), 6.68\left(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}, 6^{\prime}-\mathrm{H}\right), 3.82(\mathrm{q}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{CH}-\mathrm{N}), 3.52\left(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}\right), 2.90$ (bs, $1 \mathrm{H}, \mathrm{OH}), 2.40\left(\mathrm{bs}, 10 \mathrm{H}, 5 \mathrm{CH}_{2} \mathrm{~N}\right), 1 \cdot 20\left(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{k}$ Oily base IIId, ${ }^{1} \mathrm{H}$ NMR spectrum: $\delta 6 \cdot 70-7.60(\mathrm{~m}, 6 \mathrm{H}, \mathrm{ArH})$, $3.90(\mathrm{q}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{CH}-\mathrm{N}), 3.48\left(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}\right), 3.32\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 2.52\left(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{NCH}_{2}\right.$ in the chain), $2.48\left(\mathrm{~s}, 8 \mathrm{H}, 4 \mathrm{CH}_{2} \mathrm{~N}\right.$ of piperazine), $1.25\left(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{C}-\mathrm{CH}_{3}\right) .{ }^{l 1} \mathrm{H}$ NMR srectrum: $\delta 7.55(\mathrm{bs}, 1 \mathrm{H}, 6-\mathrm{H}), 6.60-7 \cdot 40(\mathrm{~m}, 12 \mathrm{H}$, remaining A.rH), $4.02(\mathrm{q}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{CH}-\mathrm{N}), 3.15\left(\mathrm{bt}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}^{4} \mathrm{CH}_{2}\right.$ of piperazine), $2.60\left(\mathrm{bt}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}^{1} \mathrm{CH}_{2}\right.$ of piperazine), $1.31(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{m}$ Oily base $I V b,{ }^{1} \mathrm{H}$ NMR spectrum: $\delta 7.58(\mathrm{bs}, 1 \mathrm{H}, 6-\mathrm{H}), 6.60-7.40(\mathrm{~m}, 11 \mathrm{H}$, remaining ArH), $3.95(\mathrm{q}, J=7.0 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{Ar}-\mathrm{CH}-\mathrm{N}$), $3.08\left(\mathrm{bt}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}^{4} \mathrm{CH}_{2}\right.$ of piperazine), $2.52\left(\mathrm{bt}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}^{1} \mathrm{CH}_{2}\right.$ of pipe-azine), $1.25\left(\mathrm{~d}, \mathrm{~J}=7.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$. ${ }^{1}{ }^{1} \mathrm{H}$ NMR spectrum: $\delta 6 \cdot 60-7.60(\mathrm{~m}, 12 \mathrm{H}, \mathrm{ArH}), 3.95(\mathrm{q}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{CH}-\mathrm{N}), 3 \cdot 10\left(\mathrm{bt}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}^{4} \mathrm{CH}_{2}\right.$ of piperazine), $2 \cdot 52$ (bt, $4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}^{1} \mathrm{CH}_{2}$ of piperazine), $1.25\left(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{0}{ }^{1} \mathrm{H}$ NMR spectrum: $\delta 6.70-7.70(\mathrm{~m}, 11 \mathrm{H}, \mathrm{ArH}), 3.98(\mathrm{q}, J=6.5 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{Ar}-\mathrm{CH}-\mathrm{N}), 3 \cdot 15\left(\mathrm{bm}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}^{4} \mathrm{CH}_{2}\right.$ of piperazine), $2 \cdot 60\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}^{1} \mathrm{CH}_{2}\right.$ of piperazine), $1 \cdot 30\left(\mathrm{~d}, \mathrm{~J}=6.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$. ${ }^{p}$ When using method A in this case, a mixture of bases was obtained, which was chromatographed on $\mathrm{Al}_{2} \mathrm{O}_{3}$ and the only homogeneous fraction obtained was identified as the starting 1-(3 -chlorophenyl)piperazine ${ }^{10}$. Maleate, m.p. 147-148.5 ${ }^{\circ} \mathrm{C}$ (ethanol). $\mathrm{For}^{\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{ClN}_{2} \mathrm{O}_{4}}$ (312.8) calculated: $53.76 \% \mathrm{C}, 5.48 \% \mathrm{H}, 11.34 \% \mathrm{Cl}, 8.96 \% \mathrm{~N}$; found: $53.72 \% \mathrm{C}, 5.54 \% \mathrm{H}, 11.45 \% \mathrm{Cl}, 9.01 \% \mathrm{~N}{ }^{q}$ Oily base Va, ${ }^{1} \mathrm{H}$ NMR spectrum: $\delta 7.55(\mathrm{bs}, 1 \mathrm{H}, 6-\mathrm{H}), 6.60-7.30(\mathrm{~m}, 11 \mathrm{H}$, remaining ArH$), 3.98(\mathrm{q}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{CH}-\mathrm{N}), 3.09\left(\mathrm{bt}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}^{4} \mathrm{CH}_{2}\right.$ of piperazine), $2 \cdot 50\left(\mathrm{bt}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}^{1} \mathrm{CH}_{2}\right.$ of p.perazine), $1 \cdot 24\left(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{r}{ }^{1} \mathrm{H}$ NMR spectrum: $\delta 6.60-7 \cdot 70(\mathrm{~m}, 10 \mathrm{H}, \mathrm{ArH})$, $3.98(\mathrm{q}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{CH}-\mathrm{N}), 3 \cdot 10\left(\mathrm{bt}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}^{4} \mathrm{CH}_{2}\right.$ of piperazine), $2 \cdot 52\left(\mathrm{bt}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}^{1} \mathrm{CH}_{2}\right.$ of piperazine), $1 \cdot 30(\mathrm{~d}, J=$ $\left.=6.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{s}$ Content of bromine.
and of compounds $I I a$ and $V c$ as examples of carrying out the preparation by the general methods A and B.

Compounds $I-V$ in the form of salts, described in Table I, were subjected to biological screening. First of all the acute toxicities in mice (LD_{50} in $\mathrm{mg} / \mathrm{kg}$), way of administration and doses (D in $\mathrm{mg} / \mathrm{kg}$), used in the general pharmacological screening, are given: $I b, 60$, i.v., 12 ; Ic, 80 , i.v., 16; Id, 87.5, i.v., 15; Ie, 75-100, i.v., 20; IIa, 60 , i.v., 12; IIb, 30, i.v., 6; IId, 125, i.v., 25; IIe, 2000 , p.o., 300; IIId, 100, i.v., 20; $I V a,>2500$, p.o., 300; IVb, 2500 , p.o., 300 ; IVc, >2500, p.o., 300 ; IVd, >2500, p.o., $300 ; V b,>2500$, p.o., $300 ; V c,>2500$, p.o., $300 ; V I, 363$, p.o.

Some of the compounds proved to have antitussive action in rats (the coughing activity was elicited by the aerosol of citric acid solution and the oral ED (in $\mathrm{mg} / \mathrm{kg}$) given inhibited the frequency of cough attacks approximately to 50% of the control value): $I b, 60$ (equipotent to $10 \mathrm{mg} / \mathrm{kg}$ p.o. of codeine); Id, $75 ; I I a, 60 ;$ IId, 125 ; $I V a, 300 ; V b, 300$. Two of the compounds potentiated the thiopental effect in mice (ED in $\mathrm{mg} / \mathrm{kg}$ i.v. prolonged the sleeping time to 200% of the control): $I d,>10$; IIId, $10-20$. Compound IIe showed diuretic effect in mice: oral dose of $100 \mathrm{mg} / \mathrm{kg}$ increased diuresis by 100% (hydrochlorothiazidelike effect) in comparison with the control.

Compound VI was tested as a potential antidepressant (doses calculated per base). In the oral dose of $50 \mathrm{mg} / \mathrm{kg}$ it showed some antireserpine action in the test of reser-pine-induced gastric ulcers in rats. On the other hand, it was inactive ($25 \mathrm{mg} / \mathrm{kg}$ p.o.) in the test of reserpine ptosis in mice. In the concentration of $500 \mathrm{nmol}^{-1}$ it did not inhibit the binding of $\left[{ }^{3} \mathrm{H}\right]$ imipramine and in the concentration of $100 \mathrm{nmol}^{-1}$ the binding of $\left[{ }^{3} \mathrm{H}\right]$ desipramine, both in rat hypothalamus. It cannot be considered a potential antidepressant.

In the anthelmintic screening, the compounds showed some effects towards the following species: Nippostrongylus brasiliensis (Ic, Id, Ie, IIb, IId, IIe, IIId, IVa, $I V b, I V d, V b, V d, V I)$, Hymenolepis nana (Id, Ie, IIa, IIb, IId, IIe, IIId, IVa, IVb, $I V d, V b, V d)$, Nematospiroides dubius (IIb), Aspiculuris tetraptera (IVb), Trichocephalus muris (IVb), Heterakis spumosa (IVb). In all cases, the effects were lower than those of standards and the results did not warrant some more detailed studies.

[^1]
EXPERIMENTAL

The melting points of analytical preparations were determined in Kofler block and they are not corrected; the samples were dried in vacuo of about 60 Pa over $\mathrm{P}_{2} \mathrm{O}_{5}$ at room temperature or at $77^{\circ} \mathrm{C}$. UV spectra (in methanol) were recorded with a Unicam SP 8000 spectrophotometer, IR spectra (in Nujol unless stated otherwise) with a Perkin-Elmer 298 spectrophotometer, ${ }^{\mathbf{1}} \mathrm{H}$ NMR spectra (in $\mathrm{C}^{2} \mathrm{HCl}_{3}$) with a Tesla BS $487 \mathrm{C}(80 \mathrm{MHz})$ spectrometer, and the mass spectrum with MCH 1320 and Varian MAT 44S spectrometers. The homogeneity of the products and composition of the mixtures were checked by thin-layer chromatography on silica gel (Silufol). The extracts were dried with MgSO_{4} or $\mathrm{K}_{2} \mathrm{CO}_{3}$, and evaporated under reduced pressure on a rotating evaporator.

5-Chloro-2-(3,4-dichlorophenylthio)acetophenone (VIId)

A stirred mixture of $37 \cdot 8 \mathrm{~g} 2,5$-dichloroacetophenone ${ }^{1}, 39 \cdot 4 \mathrm{~g} 3,4$-dichlorothiophenol ${ }^{6}, 47 \cdot 0 \mathrm{~g}$ $\mathrm{K}_{2} \mathrm{CO}_{3}$ and 1.0 g Cu catalyst was heated to $150-155^{\circ} \mathrm{C}$. The mixture solidified and the heating without stirring was continued for 1 h . After cooling to $80^{\circ} \mathrm{C}$, the mixture was diluted with 150 ml benzenc. the inorganic salts were filtered off and washed with benzene, and the filtrate was evaporated. The solid residue was recrystallized from 700 ml methanol; $51 \cdot 1 \mathrm{~g}(77 \%), \mathrm{m} . \mathrm{p} .98-105^{\circ} \mathrm{C}$. Analytical sample, m.p. $104 \cdot 5-106^{\circ} \mathrm{C}$ (methanol). UV spectrum: $\lambda_{\max } 232 \mathrm{~nm}(\log \varepsilon 4.45$), $263 \mathrm{~nm}(4.02), 287 \mathrm{~nm}(3.79), 340 \mathrm{~nm}$ (3.64). IR spectrum: $820,889,895$ (2 adjacent and solitary Ar-H), $1546,3070,3090$ (Ar), $1670 \mathrm{~cm}^{-1}$ (ArCOR). ${ }^{1} \mathrm{H}$ NMR spectrum: $\delta 7.75$ (d, $J=$ $=2.5 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{H}), 7 \cdot 10-7.60\left(\mathrm{~m}, 4 \mathrm{H}, 4,2^{\prime}, 5^{\prime}, 6^{\prime}-\mathrm{H}_{4}\right), 6.82(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{H}), 2 \cdot 60$ (s, $3 \mathrm{H}, \mathrm{COCH}_{3}$). For $\mathrm{C}_{14} \mathrm{H}_{9} \mathrm{Cl}_{3} \mathrm{OS}(331.7$) calculated: $50.70 \% \mathrm{C}, 2.73 \% \mathrm{H}, 32.07 \% \mathrm{Cl}, 9.67 \% \mathrm{~S}$; found: $50.89 \% \mathrm{C}, 2.79 \% \mathrm{H}, 31.89 \% \mathrm{Cl}, 9.80 \% \mathrm{~S}$.

5-Chloro-2-(2,5-dichlorophenylthio)acetophenone (VIIe)

A. similar reaction of $28.4 \mathrm{~g} 2,5$-dichloroacetophenone ${ }^{1}, 29.6 \mathrm{~g} 2,5$-dichlorothiophenol ${ }^{7}, 35 \cdot 0 \mathrm{~g}$ $\mathrm{K}_{2} \mathrm{CO}_{3}$ and 0.6 g Cu gave $18.5 \mathrm{~g}(37 \%)$ crude VIIe, m.p. $125-130^{\circ} \mathrm{C}$. Analytical sample. m.p. $131 \cdot 5-132.5^{\circ} \mathrm{C}$ (2-butanone). UV spectrum: $\lambda_{\max } 233 \mathrm{~nm}(\log \varepsilon 4.47), 260 \mathrm{~nm}(3.94), 340 \mathrm{~nm}$ (3.57), infl. 286 nm (3.64). IR spectrum: $811,817,858,880$ (2 adjacent and solitary $\mathrm{Ar}-\mathrm{H}$), 1.535 , $1550,1572,3075$ (Ar), $1662 \mathrm{~cm}^{-1}$ (ArCOR). ${ }^{1} \mathrm{H}$ NMR spectrum: $\delta 7.70(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}$, $6-\mathrm{H}), 7 \cdot 10-7.50\left(\mathrm{~m}, 4 \mathrm{H}, 4,3^{\prime}, 4^{\prime}, 6^{\prime}-\mathrm{H}_{4}\right), 6 \cdot 81(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{H}), 2 \cdot 60\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{COCH}_{3}\right)$. For $\mathrm{C}_{14} \mathrm{H}_{9} \mathrm{Cl}_{3} \mathrm{OS}(331 \cdot 7$) calculated: $50.70 \% \mathrm{C}, 2.73 \% \mathrm{H}, 32.07 \% \mathrm{Cl}, 9.67 \% \mathrm{~S}$; found: $50.93 \% \mathrm{C}$, $2.74 \% \mathrm{H}, 32 \cdot 02 \% \mathrm{Cl}, 9 \cdot 63 \% \mathrm{~S}$.

5-Bromo-2-(phenylthio)acetophenone (VIIIa)

A mixture of 30.0 g 2,5-dibromoacetophenone ${ }^{5}, 12.5 \mathrm{~g}$ thiophenol, $23.5 \mathrm{~g} \mathrm{~K}_{2} \mathrm{CO}_{3}$ and 0.4 g Cu was stirred for 10 min at room temperature, heated for 1 h without stirring to $100^{\circ} \mathrm{C}$, cooled to $50^{\circ} \mathrm{C}$, and diluted with 140 ml benzene. Inorganic salts were filtered off, washed with 50 ml benzene, the filtrate was washed with $50 \mathrm{ml} 10 \% \mathrm{NaHCO}_{3}$ and with water, it was dried and evaporated. Crystallization from 20 ml hexane gave 12.2 g inhomogeneous product (TLC) which was recrystallized from a mixture of 10 ml cyclohexane and 13 ml hexane; $8.4 \mathrm{~g}(26 \%)$, m.p. $59-64^{\circ} \mathrm{C}$. Analytical sample, m.p. $65 \cdot 5-66 \cdot 5^{\circ} \mathrm{C}$ (hexane). UV spectrum: $\lambda_{\max } 246 \mathrm{~nm}(\log \varepsilon 4 \cdot 27), 337 \mathrm{~nm}(3 \cdot 75)$, infl. $275 \mathrm{~nm}(4 \cdot 03)$. IR spectrum: $699,708,760,799,810,862,872$ (5 and 2 adjacent and solitary Ar H), $1537,1572,3060,3085$ (Ar), $1668 \mathrm{~cm}^{-1}$ (ArCOR). ${ }^{1} \mathrm{H}$ NMR spectrum: $\delta 7.70$ (d, $J=-8.5 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{H}), 7.25(\mathrm{dd}, J=8.5 ; 2.0 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}) .7 .46\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}\right), 6.95(\mathrm{~d}, J=$
$=2.0 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{H}), 2.67\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{COCH}_{3}\right)$. For $\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{BrOS}(307.2)$ calculated: $54.73 \% \mathrm{C}$ $3.61 \% \mathrm{H}, \mathbf{2 6 . 0 1 \%} \mathrm{Br}, 10.44 \%$ S; found: $54.83 \% \mathrm{C}, \mathbf{3 . 6 3 \%} \mathrm{H}, 26 \cdot 23 \% \mathrm{Br}, 10 \cdot 48 \% \mathrm{~S}$.

1-(5-Chloro-2-(2-chlorophenylthio)phenyl)ethanol (IXb)
A solution of $25.0 \mathrm{~g} V I I b\left(\right.$ ref. $\left.^{3}\right)$ in 100 ml ethanol was stirred and treated at $60^{\circ} \mathrm{C}$ with 3.8 g NaBH_{4} (added in small portions), and the mixture was refluxed for $1 \cdot j \mathrm{~h}$. Ethanol was evaporated, the residue was diluted with 100 ml water and the suspension was heated to $100^{\circ} \mathrm{C}$ for several minutes. After cooling, the product was extracted with benzene, and the extract was processed: $24.8 \mathrm{~g}\left(98 \%\right.$) crude product, m.p. $82-85^{\circ} \mathrm{C}$. Analytical sample, m.p. $84-85.5^{\circ} \mathrm{C}$ (cyclohexane--light petroleum). IR spectrum: 740, 825, 879 (4 and 2 adjacent, and solitary $\mathrm{Ar}-\mathrm{H}$), 1088 , $1098(\mathrm{CHOH}), 1550,1560,1570,1577,3050(\mathrm{Ar}), 3350 \mathrm{~cm}^{-1}(\mathrm{OH}) .{ }^{1} \mathrm{H}$ NMR spectrum: $\delta 6.60-7.70(\mathrm{~m}, 7 \mathrm{H}, \mathrm{ArH}), 5.22(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{CH}-\mathrm{O}), 2.20(\mathrm{bd}, 1 \mathrm{H}, \mathrm{OH}), 1.38(\mathrm{~d}, J=6.0 \mathrm{~Hz}$, $3 \mathrm{H}, \mathrm{CH}_{3}$). For $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{Cl}_{2} \mathrm{OS}(299 \cdot 2)$ calculated: $56 \cdot 19 \% \mathrm{C}, 4.04 \% \mathrm{H}, 23.70 \% \mathrm{Cl}, 10.72 \% \mathrm{~S}$;

1-(5-Chloro-2-(4-chlorophenylthio)phenyl)ethanol (IXC)
Similar reduction of 23.0 g VIIc (ref. ${ }^{4}$) with 3.0 g NaBH 4 in 100 ml ethanol gave 22.7 g (99%) crude oily $I X c$. A sample for analysis was distilled, b.p. $187^{\circ} \mathrm{C} / 0 \cdot 1 \mathrm{kPa}$. IR spectrum (film): 812 , 895 (2 adjacent and solitary $\mathrm{Ar}-\mathrm{H}$), 1092 (CHOH), $1472,1552,1579,3060,3075$ (Ar), $3350 \mathrm{~cm}^{-1}(\mathrm{OH}) .{ }^{1} \mathrm{H}$ NMR spectrum: $\delta 7.65(\mathrm{~d}, 1 \mathrm{H}, 6-\mathrm{H}), 6 \cdot 80-7 \cdot 40(\mathrm{~m}, 6 \mathrm{H}$, remaining ArH), 5.32 (bq, $J=7.0 \mathrm{~Hz} .1 \mathrm{H}, \mathrm{Ar}-\mathrm{CH}-\mathrm{O}$), 2.30 (bs, $1 \mathrm{H}, \mathrm{OH}$), 1.48 (d, $J=7.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}$). For $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{Cl}_{2} \mathrm{OS}(299 \cdot 2)$ calculated: $56 \cdot 19 \% \mathrm{C}, 4 \cdot 04 \% \mathrm{H}, 23 \cdot 70 \% \mathrm{Cl}, 10 \cdot 72 \% \mathrm{~S}$; found: $56 \cdot 27 \% \mathrm{C}$, $4 \cdot 05 \% \mathrm{H}, 23 \cdot 48 \% \mathrm{Cl}, 10 \cdot 87 \% \mathrm{~S}$.

1-(5-Chloro-2-(3,4-dichlorophenylthio)phenyl)ethanol (IXd)
Similar reduction of $49 \cdot 0 \mathrm{~g}$ VIId with $7.0 \mathrm{~g} \mathrm{NaBH}_{4}$ in 200 ml boiling ethanol afforded 44.0 g $\left(89 \%\right.$) crude oily $I X d$. A sample for analysis was distilled, b.p. $205^{\circ} \mathrm{C} / 1 \cdot 1 \mathrm{kPa}$. For $\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{Cl}_{3} \mathrm{OS}$ ($333 \cdot 7$) calculated: $50 \cdot 39 \% \mathrm{C}, \mathbf{3} \cdot 32 \% \mathrm{H}, \mathbf{3 1} \cdot 88 \% \mathrm{Cl}, 9 \cdot 61 \% \mathrm{~S}$; found: $50 \cdot 70 \% \mathrm{C} .3 \cdot 38 \% \mathrm{H}, \mathbf{3 1 \cdot 2 8 \%} \mathrm{Cl}$, $9 \cdot 87 \%$ S.

1-(5-Chloro-2-(2,5-dichlorophenylthio)phenyl)ethanol (IXe)

A stirred suspension of 22.5 g VIIe in 100 ml ethanol was treated at $50^{\circ} \mathrm{C}$ with 4.0 g NaBH , added in small portions. The solution formed was stirred for 1 H at $50-60^{\circ} \mathrm{C}$, and refluxed for 3.5 h . After evaporation, the residue was distributed between 130 ml water and 100 ml benzene. The organic layer was dried and evaporated, the residue (20.7 g) was crystallized from a mixture of 20 ml cyclohexane and 40 ml light petroieum; $17.6 \mathrm{~g}(60 \%)$, m.p. $75-79^{\circ} \mathrm{C}$. Analytical sample, m.p. $77.5-80^{\circ} \mathrm{C}$ (cyclohexane-light petroleum). IR spectrum: 798, 810, 872, 882 (2 adjacent and solitary $\mathrm{Ar}-\mathrm{H}), 1090(\mathrm{CHOH}), 1550,1565,1578,3052,3070(\mathrm{Ar}), 3330,3410 \mathrm{~cm}^{-1}(\mathrm{OH})$. ${ }^{1} \mathrm{H}$ NMR spectrum: $\delta 7 \cdot 65$ (bs, $1 \mathrm{H}, 6-\mathrm{H}$), $6 \cdot 90-7 \cdot 40\left(\mathrm{~m}, 4 \mathrm{H}, 3,4,3^{\prime}, 4^{\prime}-\mathrm{H}_{4}\right), 6 \cdot 55\left(\mathrm{bs}, 1 \mathrm{H}, 6^{\prime}-\mathrm{H}\right)$, $5.20(\mathrm{bm}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{CH}-\mathrm{O}), 2.10(\mathrm{hd}, 1 \mathrm{H}, \mathrm{OH}), 1.39\left(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$. For $\mathrm{C}_{14} \mathrm{H}_{11}$ $\mathrm{Cl}_{3} \mathrm{OS}(333 \cdot 7)$ calculated: $50 \cdot 39 \% \mathrm{C}, 3 \cdot 32 \% \mathrm{H}, 31 \cdot 88 \% \mathrm{Cl}, 9 \cdot 61 \% \mathrm{~S}$; found: $50 \cdot 28 \% \mathrm{C}, 3 \cdot 38 \% \mathrm{H}$, $31 \cdot 58 \% \mathrm{Cl}, 9 \cdot 61 \% \mathrm{~S}$.

1-(5-Bromo-2-(phenylthio)phenyl)ethanol (Xa)

Reduction of 8.4 g VIIIa with 1.2 g NaBH 4 in 40 ml ethanol was carried out similarly like in the
preparation of $I X b ; 6 \cdot 8 \mathrm{~g}(81 \%)$ crude $X a$ (oil). Distillation gave $5 \cdot 1 \mathrm{~g}$ product, b.p. $164-166^{\circ} \mathrm{C}$ / 166 Pa . IR spectrum (film): 690, 740, 750, 798, 822, 899 (5 and 2 adjacent, and solitary Ar-H), $1050,1070,1086(\mathrm{CHOH}), 1552,1575,3060,3075(\mathrm{Ar}), 3350 \mathrm{~cm}^{-1}(\mathrm{OH}) .{ }^{1} \mathrm{H}$ NMR spectrum: $\delta 7 \cdot 10-7.60(\mathrm{~m}, 8 \mathrm{H}, \mathrm{ArH}), 5.31(\mathrm{bq}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{CH}-\mathrm{O}), 2.30(\mathrm{bs}, 1 \mathrm{H}, \mathrm{OH})$, $1.45\left(\mathrm{~s}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$. For $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{BrOS}(309 \cdot 2)$ calculated: $54.37 \% \mathrm{C}, 4.24 \% \mathrm{H}$, $25 \cdot 84 \% \mathrm{Br}, 10 \cdot 37 \% \mathrm{~S}$; found: $54 \cdot 90 \% \mathrm{C}, 4 \cdot 33 \% \mathrm{H}, 25 \cdot 97 \% \mathrm{Br}, 10 \cdot 43 \% \mathrm{~S}$.

4,4'-Dichloro-2-(1-chloroethyl)diphenyl Sulfide (XIc)

A stirred solution of 20.5 g IXc in 45 ml benzene was treated over 15 min at $45-50^{\circ} \mathrm{C}$ with a solution of $8.3 \mathrm{~g} \mathrm{SOCl}_{2}$ in 15 ml benzene, the mixture was stirred at this temperature for 30 min , and refluxed for 1.5 h . The volatile components were completely evaporated in vacuo; $21.9 \mathrm{~g}(100 \%)$ crude oily XIc. A sample was distilled with partial decomposition; b.p. $171^{\circ} \mathrm{C} / 80 \mathrm{~Pa} .{ }^{1} \mathrm{H}$ NMR spectrum: $\delta 7.70$ (bs, $1 \mathrm{H}, 3-\mathrm{H}$), $7.00-7.40(\mathrm{~m}, 6 \mathrm{H}$, remaining ArH) $5.70(\mathrm{q}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{Ar}-\mathrm{CH}-\mathrm{Cl}$), $1.80\left(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$). For $\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{Cl}_{3} \mathrm{~S}(317.7)$ calculated: $10.10 \% \mathrm{~S}$; found: $9 \cdot 88 \%$ S. Compounds XIb, XId, XIe and XIIa were prepared similarly as oily crude products in yields of $95-100 \%$ and were used without characterization.

1-(1-(5-Chloro-2-(phenylthio)phenyl)ethyl)-4-(2-hydroxyethyl)piperazine (IIa) (Method A)

A stirred mixture of $5 \cdot 7 \mathrm{~g} X I a$ (ref. ${ }^{1}$), $13 \cdot 0 \mathrm{~g}$ 1-(2-hydroxyethyl)-piperazine and 15 ml chloroform was refluxed for 6 h , diluted with 120 ml benzene and washed repeatedly with water. The organic layer was dried and evaporated. The residue (7.4 g crude oily base $I I a$) was dissolved in 40 ml ethanol and the solution was neutralized with a solution of 4.64 g malcic acid in 15 ml ethanol. Treatment with 120 ml ether and standing overnight led to crystallization of $8.6 \mathrm{~g}(70 \%)$ bis(hydrogen maleate), m.p. $135-137^{\circ} \mathrm{C}$. Crystallization from 2-propanol gave the analytical sample melting at $134-136^{\circ} \mathrm{C}$.

Decomposition of a sample of the maleate with $\mathrm{NH}_{4} \mathrm{OH}$ released the base which was isolated by extraction with benzene and crystallized from a mixture of benzene and hexane, m.p. $72-76^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR spectrum: $\delta 7.50(\mathrm{bs}, 1 \mathrm{H}, 6-\mathrm{H}), 7.00-7.30(\mathrm{~m}, 7 \mathrm{H}$, remaining ArH), 3.91 (q, $J=$ $=7.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{CH}-\mathrm{N}$), $3.55\left(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}\right), 3.02(\mathrm{bs}, 1 \mathrm{H}, \mathrm{OH}), 2.40(\mathrm{bs}$, $\left.10 \mathrm{H}, 5 \mathrm{CH}_{2} \mathrm{~N}\right), 1.20\left(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$. For analyses of the maleate and of the base, of. Table I.

1-(1-(5-Chloro-2-(4-chlorophenylthio)phenyl)ethyl)-4-(3-chlorophenyl)piperazine ($V c$) (Method B)

A mixture of 6.9 g crude $X I c, 10 \mathrm{ml}$ dimethylformamide, $4.3 \mathrm{~g} \mathrm{1-(3-chlorophenyl)piperazine}{ }^{10}$ and $3.5 \mathrm{~g} \mathrm{~K}_{2} \mathrm{CO}_{3}$ was stirred for 5 h at $120^{\circ} \mathrm{C}$. After cooling it was diluted with 100 ml benzene, the inorganic salts were filtered off and washed with benzene, the filtrate was washed with water and then shaken with $100 \mathrm{ml} 2 \cdot 5 \mathrm{M}-\mathrm{HCl}$. The organic layer was evaporated to the volume of 80 ml and allowed to stand for 2 days in a refrigerator. The solution deposited $7.0 \mathrm{~g}(62 \%) V c$ hydrochloride which proved rather insoluble in water and in dilute hydrochloric acid but soluble in benzene. It was recrystallized from 2-propanol, m.p. 175-177 ${ }^{\circ} \mathrm{C}$.

The base was released from the hydrochloride with $\mathrm{NH}_{4} \mathrm{OH}$ and isolated by extraction with benzene; m.p. $133-136^{\circ} \mathrm{C}$ (benzene-light petroleum). ${ }^{1} \mathrm{H}$ NMR spectrum: $\delta 6 \cdot 50-7 \cdot 60(\mathrm{~m}, 11 \mathrm{H}$, $\operatorname{ArH}), 3.98(\mathrm{q}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{CH}-\mathrm{N}), 3.10\left(\mathrm{bm}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}^{4} \mathrm{CH}_{2}\right.$ of piperazine $), 2.55$ (bm, $4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}^{1} \mathrm{CH}_{2}$ of piperazine), $1.28\left(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$). For analyses of the hydrochloride and of the base, $c f$. Takle I.

The authors wish to thank their colleagues in the various departments of this Institute for their contributions: Mrs M. Vlková (synthesis of the starting compounds and some intermediates), Mrs J. Komancová and Mrs V. Smidová (elemental analyses), Dr E. Svátek and Mrs A. Hrádková (UV and IR spectra), Dr M. Ryska (the mass spectrum), Dr S. Wildt (pharmacological screening), Drs A. Dlabač and M. Valchář, Mrs A. Kargerová and Miss A. Vykulilová (psychopharmacology and biochemical pharmacology), and finally Dr V. Holá (microbiological screening). Our special thanks are due to Dr J. Danek (Research Institute of Feed Supplements and Veterinary Drugs, Jilové near Prague) and to Dr R. Spaldonová (Helminthological Institute of the Slovak Academy of Sciences, Košice) for results of the anthelmintic screening.

REFERENCES

1. Rajצ̌ner M., MikSík F., Protiva M.: This Journal 43, 1276 (1978).
2. Anonym: Drugs Today 19, 552 (1983).
3. Protiva M., Dlabac̆ A., Valchář M., Wildt S., Červená I., Šedivý Z.: This Journal 51, 156 (1986).
4. Bártl V., Holubek J., Svátek E., Bartošová M., Protiva M.: This Journal 48, 1173 (1983).
5. Polívka Z., Jílek J., Holubek J., Svátek E., Dlabač A., Valchář M., Protiva M.: This Journal 49, 86 (1984).
6. Červená I., Metyšová J., Svátek E., Kaká̌ B., Holubek J., Hrubantová M., Protiva M.: This Journal 41, 881 (1976).
7. Šindelář K., Kakáč B., Svátek E., Holubek J., Metyšová J., Hrubantová M., Protiva M.: This Journal 38, 3321 (1973).
8. Polívka Z., Ryska M., Holubek J., Svátek E., Metyš J., Protiva M.: This Journal 48, 2395 (1983).
9. Vejdellek Z. J., Mety J., Hradil F., Protiva M.: This Journal 40, 1204 (1975).
10. Pollard C. B., Wicker T. J. jr: J. Am. Chem. Soc. 76, 1853 (1954).

Translated by the author (M. P.).

[^0]: for recording the ${ }^{1} \mathrm{H}$ NMR spectrum (the other bases were obtained similarly): $\delta 7.55(\mathrm{bs}, 1 \mathrm{H}, 6-\mathrm{H}), 6.70-7.45$ ($\mathrm{m}, 6 \mathrm{H}$, remaining ArH), $3.90(\mathrm{q}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{CH}-\mathrm{N}), 2.40\left(\mathrm{bs}, 8 \mathrm{H}, 4 \mathrm{CH}_{2} \mathrm{~N}\right.$ of piperazine), $2.20\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 1.24\left(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{C}-\mathrm{CH}_{3}\right)$. ${ }^{c}$ Oily base Ic, ${ }^{1} \mathrm{H}$ NMR spectrum: $\delta 7.50(\mathrm{bs}, 1 \mathrm{H}, 6-\mathrm{H})$, c. $7 \cdot 10(\mathrm{~m}, 6 \mathrm{H}$, remaining ArH), $3.90(\mathrm{q}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{CH}-\mathrm{N}), 2.35$ (bs, $8 \mathrm{H}, 4 \mathrm{CH}_{2} \mathrm{~N}$ of piperazine), $2 \cdot 19\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 1 \cdot 20\left(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{C}-\mathrm{CH}_{3}\right) .{ }^{d}$ Monohydrate. ${ }^{e}$ Oily base Id, ${ }^{1} \mathrm{H}$ NMR spectrum: $\delta 6.80-7.60(\mathrm{~m}, 6 \mathrm{H}, \mathrm{ArH}), 3.88(\mathrm{q}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{CH}-\mathrm{N}), 2.35\left(\mathrm{bs}, 8 \mathrm{H}, 4 \mathrm{CH}_{2} \mathrm{~N}\right.$ of piperazine), $2.20\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 1 \cdot 25(\mathrm{~d}$, $\left.J=6 \cdot 5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{C}-\mathrm{CH}_{3}\right) .{ }^{f}$ Oily base If, ${ }^{1} \mathrm{H}$ NMR spectrum: $\delta 7 \cdot 60(\mathrm{bs}, 1 \mathrm{H}, 6-\mathrm{H}), \mathrm{c} .7 \cdot 25\left(\mathrm{~m}, 3 \mathrm{H}, 3,4,3^{\prime}-\mathrm{H}_{3}\right), 7 \cdot 00(\mathrm{dd}, J=8 \cdot 0 ; 3 \cdot 0 \mathrm{~Hz}$,

[^1]: The compounds prepared were also tested for antimicrobial activity in vitro (the minimuminhibitory concentrations in $\mu \mathrm{g} / \mathrm{ml}$ are given unless they exceed $100 \mu \mathrm{~g} / \mathrm{ml}$): Streptococcus β-haemolyticus, Ib 10, Ic 5, Id 5, Ie 5, IIa 50, IIb 25, IId 5, IIe 5, IIId 25, VI 6.2; Streptococcus faccalis, Ib $12 \cdot 5$, Ic $12 \cdot 5$, Id 10 , Ie 10, IIa 100, IIb 50, IId 10, IIe 10, IIId 100, VI 25; Staphylococcus pyogenes aureus, Ib 10, Ic 5, Id 5, Ie 5, IIa 50, IIb 25, IIa 10, IIe 10, IIId 25, VI 12.5; Proteus vulgaris, Id 100, IId 100, VI 100; Saccharomyces pasterianus, Ic 50, Id 50, IId 50, IIe 50, VI 50; Trichophyton mentagrophytes, Ib 25, Ic 25, Id 12•5, Ie 12•5, IIa 50, IIb 25, IId 12•5, IIe 12•5, IIId 25, VI 12•5.The inactivity of the N -arylpiperazino compounds is probably due to their very low water-solubility.

